Silicon based heterojunction photovoltaics: first results on MoO₃/Si solar cells

F.B. Zerbo¹, M. Modreanu², I. Povey², J. Lin², A. Létoublon¹, A. Beck¹, A. Rolland¹, K. Tavernier¹, S. Boyer-Richard¹, O. Durand¹

¹Univ Rennes, INSA, CNRS, Institut FOTON - UMR 6082, F-35000 Rennes, France

²Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland

The silicon heterojunction solar cells display high performance with rather low-cost fabrication and low wafer thickness ($<100\mu$ m). Their principle lies in a low surface recombination velocity through the separation of the crystalline silicon absorber from the highly recombination active metal contacts by a passivating, widebandgap emitter "buffer" layer as "transparent" as possible to allow the majority carriers flow while reflecting the minority carriers one. It is usually made of a hydrogenated amorphous a-Si:H layer which displays a 1.7 eV quasi-bandgap despite several limitations: low conductivity material, high electron-hole recombination rate, optical losses due to a large absorption coefficient. Therefore, to overcome these limitations, a wider bandgap semiconductor such as Molybdenum trioxide (MoO₃) could be a promising material to replace the a-Si:H in solar cells^{1–3} since it displays high bandgap of about 2.9eV and a large work function⁴, suitable for an appropriate electronic band line-up between this emitter layer and the silicon absorber.

To this end, different solar cell configurations based on ITO/MoO₃/p-type Si(001) heterostructures were fabricated and characterized. 3 samples were studied: 3 n+/p diodes, with 3 different treatments for the 15 nm-thin MoO₃ (prior to the 80 nm-thick ITO deposition): one sample was not annealed, one was annealed under N₂ atmosphere, and one was annealed under O₂ atmosphere. Indeed, MoO₃ doping level is linked to annealing conditions: a n-type doping of MoO₃ is observed which is known to depend on oxygen vacancies concentration⁵. External quantum efficiency measurements are presented on figure 1. Annealing under O₂ strongly enhances the EQE on the n+/p samples while N₂ annealing almost deteriorates EQE for both types of samples. A second step of ITO annealing, necessary to obtain efficient electric contacts, slightly deteriorates EQE in all cases.

Al front contact with busbar and fingers deposited on ITO on all samples, obtaining 1cm^2 square solar cells. I-V under solar simulator and EQE measurements were performed on each structure. n+/p structures present solar cell characteristics with high series resistances. The better results are obtained with O₂ annealing, with $V_{OC} = 0.55 V$ under AM1.5G solar simulator, $J_{SC} = 23.21 \text{ mA/cm}^2$, a fill factor of 37.6%, giving an efficiency of 5.5 % (figure 2).

25 20 mA/cm² 15 10 EMoOx044 V_{oc}=0.54 V J_{sc}=23.21 mA/cm² FF=37.6% n= 5.5 % (CST $= 86 \text{ mW/cm}^2$ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 **V** (**V**)

Figure 1 : EQE results on n+/p samples red curve : no MoO₃ annealing / green: MoO₃ annealing under N₂ / blue curve : MoO₃ annealing under O₂

This research was supported by the EIC Pathfinder NANO-EH project (Grant No. FETPRO-ACT-EIC-05-2019).

- 1. Battaglia, C. et al, Appl. Phys. Lett. 104, 1–6 (2014).
- 2. Gerling, L., Mahato, S., Voz, C., Alcubilla, R. & Puigdollers, J., Appl. Sci. 5, 695–705 (2015).
- 3. Geissbühler, J. et al. Appl. Phys. Lett. 107, (2015).
- 4. Guo, Y. & Robertson, J.. Appl. Phys. Lett. 105, 1–5 (2014).
- 5. Peelaers, H., Chabinyc, M. L. & Van de Walle, C. G. Controlling n -Type Doping in MoO 3. *Chem. Mater.* **29**, 2563–2567 (2017).